VFP performance in LAN environment
Author: Josip Zohil, Koper, Slovenia, Josip.Zohil1@guest.arnes.si
Visual FoxPro is one the fastest performing desktop and LAN-based database management system available today. But opening large tables creates a great deal of network traffic. This can be a substantial delay, sometimes beyond an acceptable length of time. In this article I present the results of the VFP speed measurement in the process of acquiring database data with different VFP9 methods. The store procedures, duplicated records and unique indexes enriched by the programmers’ knowledge of the database organization can speed up the data query. With the stored procedure we can fetches the result set of 100 records from the server about 100% faster than with the full optimized SQL command. Changing the table’s normalization and using appropriate indexes, we can improve the retrieval time for 275%.

1 The problem
Let us start with an example. The fields of the ordnorm table with 50.000 records of the company with multiple warehouses are:

· OrderID - the order identification number, indexed field;

· WareID – the warehouse identification number, indexed field;

· DocType – the type of the document, indexed field;

· OrderDate - the order date,

· IncNo – auto increment value, primary key.

The first seven fields (among 40 fields) of the orddet table with 750.000 records (350 MB) are:
· OrderID - the order identification number, indexed field;
· WareID – the warehouse identification number, indexed field;

· DocType – the type of the document, indexed field;

· ShipDate – the date of shiping the article (The orders items may be shiped at different date), indexed field;

· IncNo – auto increment value, primary key.

· ArtId – the article warehouse identification number, indexed field;

The structural orddet.cdx file is of 66 MB.
For a DocType with ID 4 and warehouse with ID 14 we want to download from the server the data in the fields WareId, DocType, OrderID and ShipDate group by this fields. In the command window of the workstation (250 MB RAM) we wrote the SQL query:

SELECT ordnorm.wareid,ordnorm.doctype,ordnorm,.orderid,orddet.shipdate FROM ordnorm LEFT OUTER JOIN orddet ON orddnorm.wareid+ordnorm.doctype+STR(ordnorm.orderid,6)== orddet.wareid+orddet.doctype+STR(orddet.orderid,6) WHERE ordnorm.wareid+ordnorm.doctype= "14 4" AND ordnorm.orderid>170000 INTO CURSOR (lc1) GROUP BY ordnorm.wareid,ordnorm.doctype,ordnorm.orderid,orddet.shipdate (Q1)
In the 100Mbit LAN the data (6,000 records) arrived at the workstation after 15.37 seconds. At certain conditions (for example on the second retrieve) VFP is extremely fast (1.2 seconds), so it is much better to thoroughly look into the factors that influence its performances. The time difference can be explained by the Robert C. Bradley description of the VFP processes: 'But VFP gets its phenomenal performance by taking advantage of the LAN environment, pre-fetching columns of information, caching table headers and index contents locally' [1]. But the first time, after the opening of the table the fetch of the records from the server is far from being extremely fast, it is a very slow (15 seconds). How to improve this poor performance? Which factors influence it?
In developing new application it is relatively difficult to test its performance on large dbf files. So the problems rise with the maturation of the application. In its mature stage we normally look for application improvements we can realize with small modification: store procedure and unique indexes are between them.
2 The solutions

There are many hypothetical solutions we can try inside of VFP. We shall study the retrieval time dependences from:
· the table normalization;

· the size of the index structural file,

· the type of the index (unique),

· the retrieval method (SQL select, stored procedure),

· the size of the result set and the method used.
Let us test some of this solutions on the workstation with 512 MB RAM that is operating in the 100 Mbit LAN with a server and a workstation (On the workstation with 256 MB RAM the results change significantly, but don’t their relative dependences).

The time delay of data retrieval is influenced also by the data cache (operating system and others). To eliminate this influence, we exit the VFP application after each test. We observe the time delay only of the first retrieval.

The CDX file contains also the index tag: “index on deleted() tag dele of orders”. With this index tag all the query in this article are full optimized as reported by the function sys(3054,12). There are no deleted records in the observed tables.

I have made 10 measurements for each retrieval method and I present it in tables to have an idea of the relationships between them. In my measurement I have used relatively simple SQL queries, so changing the type of a query, doesn't have significant impact on the speed of transfer. I shall not study the influence of the number of fields and its structure on the time delay. I suppose that with the growing of the number of fields in the result set, the time to fetch the data also grows.

Using the keyword DISTINCT in the SQL query, doesn’t improve the data retrieval, so I query without it.

2.1 Table normalization and the cost of a SQL JOIN
‘If you try to join two files, each of which contains a few hundred thousand records, you could be in for some serious waiting' [6]. How to easy this problem?

From the technical point of view, we can “reduce the normalization” of the two tables: We delete the field OrderDate from the table OrdNorm and add this field to the table OrdDet. So, it has all the fields from our original two tables.
Let us concentrate our attention on the table OrdDet. It has all the data so it has duplicate records. We can retrieve all the data from this table without using JOIN.
SELECT wareid, doctype, orderid, shipdate FROM orddet WHERE wareid+ doctype= "14 4" and orderid>170000 INTO CURSOR (lc1) GROUP BY wareid, doctype, orderid, shipdate (Q2)
If we run the query Q2 on the workstation, VFP fetch the big result set of 6,000 records in 14.64 seconds. The difference between the query Q1 and Q2 are the SQL JOIN clause, which is missing in the query Q2. The cost of a SQL JOIN (or table normalization) is about 5% (from 15.37 seconds to 14.64). In certain cases we improve the performances of the VFP duplicating the records in the table and so eliminating the SQL JOIN in ours SQL statements. Later in this article we shall see that the cost off table normalization (performance penalty) has negative correlation with the dimension of the result set and surpasses 100%.
2.2 Store procedure

There are various methods for data retrieval in VFP, let us mention some:
· SQL query;

· store procedure;

· local view;

· remote view with OleDbData provider;

· cursor adapter based on local view, remote view, store procedure...;

· others;

We have tested the performances of VFP with SQL query in the preceding section. Let us profoundly study the store procedure, which we can use in various modes.
2.2.1 SQL command in stored procedure

 Let us first try an example in which we retrieve the data with the SQL command in the stored procedure.
PROCEDURE SQLTest1()

SET OPTIMIZE ON
lcCurs=SYS(2015)

SELECT wareid, doctype, orderid, shipdate FROM orddet WHERE wareid+ doctype= "14 4" and orderid>170000 GROUP BY wareid, doctype, orderid, shipdate INTO CURSOR (lcCurs)

RETURN SETRESULTSET(lcCurs)
Listing 1. Store procedure with the SQL query Q2.

On the workstation we obtain the same time delay running the store procedure in Listing 1 and the query Q1 in the command window. We haven't much control on the operation of the standardized SQL query. So, let us change the store procedure and give it a little bit more of our personal knowledge as in Listing 2.
2.2.2 Stored procedure

Let us write a stored procedure with a »classic« seek and do while ... enddo loop. The program in Listing 2 is self explanatory.

PROCEDURE DOWHILETest(lOrderIdFrom as integer, lOrderIdTo as integer)

SET OPTIMIZE ON
LOCAL lWareId as string, lno as integer, lccur as string, lDocType as string, lc1 as String

lWareId="14 " && we are working with the orders in warehouse with ID 14.

lDocType='4'

lccur=SYS(2015)

*create a cursor to store in the recordset

CREATE CURSOR (lccur)(OrderID N(6), OrderDate D(8), DocType C(1),WareId C(3),ShipDate D(8))

IF NOT USED("Orddet")

SELECT 0

USE Orddet

ELSE

SELECT Orddet

ENDIF

SET ORDER TO WTO

* Find the first record with the order ID grater or equal to lOrderNoFrom

SET EXACT OFF
FOR i=0 TO lOrderIdFrom+100000

IF INDEXSEEK(lWareId+lDocType +STR(lOrderIdFrom+i,6),.t.,"Orddet")

*If not found, seek the next OrderId

INDEXSEEK(lWareId+lDocType +STR(lOrderIdFrom+i,6),.t.,"Orddet")

EXIT
ENDIF

ENDFOR
SELECT Orddet

DO WHILE WareID+DocType==lWareID+lDocType AND orderid<=lOrderIdTo NOT EOF()

lOrderID=OrderID

lOrderDate=OrderDate

lShipDate=ShipDate

DO WHILE WareID+DocType==lWareID+lDocType AND OrderID= lOrderID AND NOT EOF()

SKIP

ENDDO
SELECT (lccur)

INSERT INTO (lccur) (OrderID,OrderDate,DocType,Wareid,ShipDate) VALUES (lOrderID,lOrderDate,lDocType,lWareId,lShipDate)

SELECT orddet

ENDDO

lccur1=SYS(2015)

SELECT * FROM (lccur) INTO CURSOR (lccur1) GROUP BY OrderID,OrderDate, DocType, Wareid,ShipDate

RETURN SETRESULTSET(lccur1)
Listing 2. Store procedure on the table OrdDet with a seek, do while .. enddo and a cursor.

Close data

lOrderIdFrom=170000
lOrderIdTO=180500
local t1

t1=seconds()

DOWHILETest(lOrderIdFrom, lOrderIdTO)

?seconds()-t1

 brow
Listing 3. The program for testing the store procedure
The stored procedure in Listing 2 collects the data from the table OrdDet in the do while loop, put them in the cursor and return the cursor.

We test the query Q1 against the store procedure in Listing 2 with the program in Listing 3. At the workstation the retrieval times of the result set with 100 records are significantly different. The store procedure is at least 273% faster (0.11 seconds the store procedure and 0.30 seconds the SQL select with a JOIN).

The FULL optimized query means only that the SQL select is entirely based on the indexes and not on giving us the minimal retrieval time! In our case, the store procedure is better according to this criterion (See also [9]).

2.2.3 The method and the normalization influence
On small result set we obtain the difference in retrieval times of 273%. Is this due to the normalization or is the result of the used method (stored procedure)? Let us observe the difference in time between:

1) retrieving data from a table with duplicate records (the SQL command on the table orddet with duplicate records) (the Q2 query with 100 records),

2) against using JOIN for two normalized tables (SQL commands with the JOIN keyword (normalized tables ordnorm and orddet) (Q1 for 100 records).

The arithmetic mean retrieval times for 100 records with the:

· query Q2 (duplicated records) is 0,22 seconds;

· and Q1 (JOIN) is 0,28 seconds.

With the store procedure I retrieve the result set of 100 records in 0,11 seconds, 100% (0.22) slower is the query on the table with duplicated records and at least 173% (0,30) slower is the query Q1: 100% derive from the method (store procedure) and 73% is due to table normalization (JOIN). In certain cases the costs of normalization are 73% slower retrieval times!!! The cost of the method used is 100%.

The fans of the standardized SQL commands can retrieve data 73% faster reducing the table normalization (using duplicate records in tables). With the store procedure or similar programs they can navigate also 173% faster, especially in environment with “thin wire” and work stations with low RAM where they normally download small result sets.

The differences in retrieval times for the result set of 100 records on the server (desktop application) have great variability and we will not study it.
1. The medium size result set of 1,400 records
The tests on the 1,400 records result set shows that the store procedure (2.14 seconds) is the fastest, the cost of the method (SQL) is 11% slower retrieval time (2.38 seconds) and the cost of normalization (SQL with the JOIN) is 8% (2.58 seconds). In total we have a difference of 19%.
2. The large size result set of 6,000 records
	
	Method

	No.of records
	store unique
	store normal
	SQL duplicated
	SQL join

	6000
	4,72
	13,67
	14,64
	15,37

	1400
	0,99
	2,14
	2,38
	2,58

	100
	0,08
	0,11
	0,22
	0,3

Table 1. Retrieval times in seconds on the workstation

The measurement in Table1 show us that on large result sets the retrieval times differs for 11% (13.67:15.37 seconds) (We shall explain later the column »store unique«).
	
	Methods

	No.of records
	store unique
	store normal
	SQL duplicated
	SQL join

	6000
	0,3
	1,03
	1,61
	2,01

	1400
	0,08
	0,21
	0,24
	0,39

Table 2. Retrieval times in seconds on the server/desktop

Retrieving this result set directly on the server give us 51% difference (1,03:2,01 seconds, Table 1). We must consider this difference especially when working on desktop application or in case we retrieve the data with processes directly on the server computer (for example asynchronously or with drivers).

2.3 The size of the index file

The SQL query (Q2) is measured on the table with a »big« 68MB CDX file and on a »small« 15MB files. Deleting a tag, we can reduce the size of the CDX file for about 3MB.I have deleted some for the test irrelevant tags, reducing the dimension of CDX file from 68MB to 24 MB. Reducing the size of the CDX file we reduce the time delay for about 10%.

We can optimize the time delay also by reducing the size of the CDX file.

“When adding indexes to your tables, you must balance the benefit you get in retrieval times against a performance loss when updating the table. As you add more indexes to your table, updates and inserts to the table are slower because Visual FoxPro needs to update each index« (VFP9 Help). To this instruction we can add: Also the data retrieval is slower with large index file. Too much of them might work against you.
2.4 Unique index

We create the unique index of the table orddet in the VFP command window:
index on WareId+DocType+str(OrderId,6)+dtoc(ShipDate) tag WTOU unique
The unique index point only on the first record of the duplicated records set. Deleting the first of them, VFP don’t move the pointer to the next record in the group. We must reindex the table, so the index reflects the new state of the table. Normally we delete the documents in the database only with administrative tools. In similar situation we must also reindex the table. We have to use unique indexes with care. Some developers don’t like them.
PROCEDURE DOWHILETestU(lOrderIdFrom as integer, lOrderIdTo as integer)

SET OPTIMIZE ON
LOCAL lWareId as string, lno as integer, lccur as string, lDocType as string, lc1 as String()

lWareId="14 " && we are working with the orders in warehouse with ID 14.

lDocType='4'

lccur=SYS(2015)

CREATE CURSOR (lccur)(OrderID N(6), OrderDate D(8), DocType C(1),WareId C(3),ShipDate D(8))

IF NOT USED("Orddet")

SELECT 0

USE Orddet

ELSE

SELECT Orddet

ENDIF
SET ORDER TO WTO

SET EXACT OFF
FOR i=0 TO lOrderIdFrom+100000

IF INDEXSEEK(lWareId+lDocType +STR(lOrderIdFrom+i,6),.t.,"Orddet")

INDEXSEEK(lWareId+lDocType +STR(lOrderIdFrom+i,6),.t.,"Orddet")

EXIT
ENDIF

ENDFOR
SELECT Orddet

DO WHILE WareID+DocType==lWareID+lDocType AND orderid<=lOrderIdTo NOT EOF()

lOrderID=OrderID

lOrderDate=OrderDate

lShipDate=ShipDate

SKIP

SELECT (lccur)

INSERT INTO (lccur) (OrderID,OrderDate,DocType,Wareid,ShipDate) VALUES (lOrderID,lOrderDate,lDocType,lWareId,lShipDate)

SELECT orddet

ENDDO

lccur1=SYS(2015)

SELECT * FROM (lccur) INTO CURSOR (lccur1) GROUP BY OrderID,OrderDate, DocType,Wareid,ShipDate

RETURN SETRESULTSET(lccur1)

Listing 4. The stored procedure with unique index WTOU and without the second dowhile loop.

We modify the procedure in Listing 2, we change the index from WTO to WTOU and remove the second DoWhile loop. The program is in Listing 4.
Using the stored procedure with the unique index, we reduce the retrieval times for the result set of 6,000 records from 13,67 to 4,72 seconds (Table 1). The cost of not using the unique index is about 290% (also for large result sets).

2.5 The penalty of normalization

Let us study the question: what is the penalty we pay, if we normalize a table

a) using only the standardized SQL queries,

b) without using the unique indexes,

c) using the unique index?
	
	Methods
	Differences between methods

	No.of records
	store unique
	store
	SQL duplicated
	SQL join
	SQL join -store
	SQL join - SQL duplicated

	100
	100
	138
	275
	375
	41
	32

	1400
	88
	191
	213
	230
	238
	100

	6000
	98
	285
	305
	320
	39
	18

Table 3. Method and normalization productivity in % for the retrieval of 1000 records on the workstation

I shall modify the data in Table 1.Think the size of the result set to be a method. We have 12 theoretical methods (3 method for retrieving 4 different result set) (Table 4). In Table 3 I calculated the penalty (productivity) in % of the 12 methods with the retrieval time of 1,000 records (retrieval times/1,000 records). (The base cell in Table 3 is the cell with value 100). We obtain 12 productivities in % for the 12 methods.
The most productive (lowest penalty) are the methods based on medium size result set (the second row in Table 3).

[image: image1.emf]Productivity for the result set of 1000 records

0

50

100

150

200

250

300

350

400

100 1400 6000

Number of records

Productivity in %

store unique

store

SQL duplicated

SQL join

Figure 1. Method and normalization productivity in % for the result set of 1000 records on the workstation

a) Using only the standardized SQL queries we pay the penalty in range from 18 to 100% (the last column in Table 3).

b) Using the optimal query method we pay a normalization penalty in range from 39 to 238% (the penultimate column in Table 3).

c) If we use unique indexes the normalization penalty is in range from 130 to 275%. Retrieving the data without unique indexes, we reduce the productivity for at least 130% (see Figure 1).

The between methods variability depends on the fetched result set (Figure 1). On small result set the differences in productivity arrive to 275%.
The methods based on unique indexes are linear, have linear dependence from the number of records in the result set (the line store unique in Figure 1). If we retrieve 100 records in 0.08 seconds, we can predict to fetch 1,000 records in 0,8 seconds.
3 The tests results

The most important results of our tests are presented in Table 1 and Table 3.

The full optimized SQL command fetches the record set of 100 records from the server about 100% slower than the stored procedure. Full rushmore optimization reported by the function sys(3054,12) means that the SQL query data select is totally based on indexes and not on being the fastest data selection the VFP9 can produce. It’s programmer’s job to create optimal retrieval methods.

In network environment the theory of table normalization must be revisited (see also [9]). From the point of view of minimal retrieval time it’s appropriate to built database architecture with only minimal table normalization. We can optimize the data retrieval times from the no-normalized tables also with writing store procedure and other fast retrieval, non SQL based procedures and using unique indexes. Normalizing the tables we can reduce the productivity for three times.

The size of the result set has great influence on the difference between the productivity of data retrieval methods. The methods that have similar productivity on large result sets can be significantly different (that exceed also 100%) on smaller result sets. Programmers have to choose appropriate retrieval methods according to the size of the result set.

Every index tag added to the structural CDX of a dbf table of size 350MB increases the CDX size for about 3MB. Eliminating the “unnecessary” tag we can significantly reduce the CDX size and improve the VFP performance.
4 Future research
We have observed only the first retrieval of the data after opening the application. What is the performance of the observed retrieval methods on the second and next try? It is interesting also the comparison of the VFP retrieve performance when concurrent users access the database. How decrease the server response time when multiple users retrieve the data in small and/or large chunk? The newer technologies for distributed computations (for example WCF) are easy to use so we can find solutions also outside VFP, for example in asynchronous data retrieval using the WCF service and (or) VFP OLE server. The server retrieval time for 6,000 records is only 0,65 seconds. If the download and other data transformation is, for example 1,35 seconds, we can have large result set at the station in 2 seconds, without application blocking.
References:

[1]. Robert C. Bradley: Visual FoxPro - Client/Server
[2]. Eldor Gemst: Remote Views SQL Pass-Through

[3]. Ted Roche: Intermediate Client-Server Techniques
[4]. Marco Antonio Mazzarino: Asynchronous Use of VFP
[5] L. Pinter: A FoxPro Server
[6] Josip Zohil: Periodical Asynchronous Requests in VFP Forms
[7] Mike Hillyer: An Introduction to Database Normalization
[8] Christof Wollenhaupt: How FoxPro works internally
[9]. P.Helland: Scaling Secret #2: Denormalizing Your Way to Speed and Profit
PAGE
8

